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Abstract: Division is the most fundamental and commonly used operations in a CPU. These operations furthermore form 

the origin for other complex operations. With ever increasing requirement for faster clock frequency it becomes essential 

to have faster arithmetic unit. In this paper a new structure of Mathematics – Vedic Mathematics is used to execute 

operations. In this paper mainly algorithm on vedic division technique which are implemented for division in Verilog and 

performance is evaluated in Xilinx ISE Design Suite 13.2 platform then compared with different parameters like delay 

time and area (number of LUT) for several bits algorithms.   
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1. INTRODUCTION:  

Division is an important essential function in arithmetic 

operations. Multiplication-based different operations 

considered as Multiply and Accumulate (MAC) and 

internal product are among some of the commonly used 

Computation- Intensive Arithmetic Functions (CIAF) 

presently implemented and designed in many Digital 

Signal Processing (DSP) appliances considered as 

convolution of two or more than two information, Fast 

Fourier Transform (FFT) of different sequences, 

filtering of signals or information and in 

microprocessors its used in arithmetical and logical unit 

(ALU) [1]. Since multiplying is the most important 

factor for the implementation time for most of the DSP 

algorithms or techniques, so there is a need of most 

efficient and high speed division. Currently, division 

time is still the most important factor in determining the 

instruction cycle time and the delay time of a DSP chip 

The requirement for high speed processing has been 

growing as a result of increasing work for computer and 

signal processing applications. Higher throughput 

arithmetical and logical operations are important to 

accomplish the required performance in various real-

time signal and image processing applications [2]. The 

main key of arithmetical and logical operations in these 

applications is multiplication and division techniques 

and the development and designing of fast and efficient 

multiplier circuit has been a subject of interest over last 

few years. Sinking the execution time and power 

consumption of required circuits are very necessary 

requirements for various applications such as in digital 

signal processing and in digital image processing [2, 3]. 

This work presents different division techniques and 

architectures. Multiplier based on Vedic or ancient 

Mathematics is one of the fast and efficient with low 

propagation delay and low power consumption 

multiplier. 

2. VEDIC MATHEMATICS:  

Vedic Mathematics introduces the magnificent 

applications to Arithmetical calculation and verification, 

theory of numbers, complex multiplications, 

fundamental algebraic operations,  complex 

factorizations, simple quadratic and advanced order 

equations, concurrent quadratic equations, partial 

fractions, in differential calculus and integral calculus, 

squaring of complex number, cubing, square root of 

complex number, cube root, 2-Dimensional and 3-

Dimensional coordinate geometry and brilliant Vedic 

Numerical code. 

2.1 Vedic Mathematics Sutras and Up-sutras:  

Entire mechanics of Vedic mathematics is based on 16 

sutras – formulas and 13 up-sutras meaning – 

corollaries.  

Sutras 

 1. Ekadhikena Purvena 

2. Nikhilam Navatascharamam       Dashatah 

3. Urdhva-tiryagbhyam 

4. Paravartya Yojayet 
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5. Shunyam Samyasamucchaye 

6. Anurupye Sunyamanyat 

7. Sankalana vyavakalanabhyam 

8. Puranaprranabhyam 

9. Calana – Kalanabhyam 

10. Yavadunam 

11. Vyastisamashtih 

12. Sheshanynkena Charmena 

13. Sopantyadvayamantyam 

14. Ekanyunena Purvena 

15. Ginitasamucchayah 

16. Gunaksamucchayah 

 

Up-sutras 

1. Anurupyena 

2. Shishyate Sheshsamjnah 

3. Adyamadye Nantyamantyena 

4. Kevalaih Saptakam Gunyat 

5. Vestanam 

6. Yavadunam Tavadunam 

7. Yavadunam Tavadunikutya    Varganka ch 

Yojayet 

8. Antyayordhshakepi 

9. Antyatoreva 

10. Samucchayagunitah 

11. Lopanasthapanabhyam 

12. Vilokanam 

13.Gunitasamucchyah Samucchayagunitah  

2.2Urdhva-tiryagbhyam:  

The Nikhilam and Anurupyena are for special cases, 

whereas Urdhva-tiryagbhyam is general formula 

applicable to all [4]. Its algebraic principle is based on 

multiplication of polynomials. Consider we want to 

multiply two 4
th

 degree polynomials 

  Ax
4
 + Bx

3
 + Cx

2
 +  Dx  + E 

Zx
4
 + Yx

3
 + Xx

2
 + Wx + V 

 

AZ x
8
 + (AY+BZ) x

7
 + (AX+BY+CZ) x

6
 + 

(AW+BX+CY+DZ) x
5
 + 

(AV+BW+CX+DY+EZ) x
4
 + (BV+CW+DX+EY) x

3
 + 

(CV+DW+XE) x
2
 + (DV+EW) x + 

EV 

Figure 1 - Multiplication of two fourth degree 

polynomials 

Highest degree coefficient can be obtained by 

multiplication of two highest degree coefficients of 

individual polynomial namely A and Z. A next degree 

coefficient is obtained by addition of cross 

multiplication of coefficients of 4
th
 degree and 3

rd
 degree 

of other polynomials[5]. It means A which is 4th degree 

coefficient of polynomial-1 is multiplied by 3
rd

 degree 

coefficient of polynomial-2 is added to 4
th
 degree 

coefficient of polynomial-2 multiplied by 3rd degree 

coefficient of polynomial-1 to get (AY+BZ). 

A  B  C  D  E 

 

 

Z  Y  X  W  V 

 

Figure 2 - Vertically Crosswise First Cross Product 

  

Similar logic of cross multiplication and addition can be 

extended till all 5 coefficients of both polynomials are 

used as follows. Every iteration gives a coefficient of 

product. 

A  B  C  D  E 

 

 

 

Z  Y  X  W  V 

 

Figure 3 - Vertically Crosswise Intermediate Cross 

Product 

 

In this iteration, coefficient of degree 4 of product is 

obtained. For next iteration we drop A and Z which are 

the highest degree polynomial coefficients. The 

resulting operation gives coefficient of the degree 3 of 

multiplication of polynomials. As follows 

A  B  C  D  E 

 

 

 

Z  Y  X  W  V 

 

Figure 4 - Vertically Crosswise Intermediate Cross 

Product 

 

Continuing with this process last coefficient is obtained 

by multiplication of 0
th
 degree terms of both 

polynomials as E*V. This process can be done is both 

ways as it is symmetric. In summary the process can be 

stated as, process of addition of product of coefficients 

of two polynomials in crosswise manner with increase 

and then decrease in number of coefficients from left to 

right with crosswise meaning product of coefficients for 

one polynomial going rightwards while for other 

leftwards. 

Any decimal number can be thought as a polynomial 

with unknown or x equal to 10. Being said that, formula 

stated above can be utilized to calculate product of two 

decimal numbers. Each digit of decimal number is 

though as coefficient of power of 10. Only restriction in 
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this case is each cross product should be only one digit, 

if not it is added to the next power of 10. 

3. PROPOSED ALGORITHM:  

The algorithms will be compared to conventional 

algorithm which is considered as restoring algorithm 

and/or Non-restoring algorithm of division. In restoring 

algorithm shifted divisor is repeatedly subtracted from 

dividend and result of subtraction is stored temporarily. 

The algorithm can be formulated as [6].  

N = Q×D + R  

Where N dividend, D is divisor, Q is quotient and R is 

remainder. 

 

Restoring Algorithm 

1. R(m) = N  m as width of N 

2. Repeat for i from m-1 to 0 

Z = R(i+1) - D×2i 

If Z ≥ 0 then Q(i) = 1, R(i) = Z 

Else Q(i) = 0, R(i) = R(i+1) 

Verilog implements restoring algorithm for its 

division block. For restoring algorithm worse case N 

subtractions has to be performed to get N digits of 

quotient. Each subtraction is equal to width of divisor. 

3.1 Binary Dhwajanka: 

 In binary number system, similar to decimal system, 

MSB of divisor is kept aside and remaining digits are 

used for cross-products[7]. 

 

In binary number system, similar to decimal system, 

MSB of divisor is kept aside and     

 Figure 5 - Complete Example of Dhwajanka 

remaining digits are used for cross-products. As digits in 

binary can only be 0 or 1, the process of Dhwajanka 

becomes simpler as division has to be carried out with 1 

always. Hence MSB of dividend becomes the MSB of 

quotient. Cross-product is taken between quotient and 

rest bits. Again, in cross-product digits being only 0 and 

1 multiplication is replaced by AND logic. After the 

addition of cross-product of bits the sum is subtracted 

from combination of previous remainder and next digit 

of dividend. In the example above first bit of quotient is 

equal to MSB of dividend and hence the remainder is 0. 

This 0 is combined with next digit of dividend 1, to 

form 01. Cross-product of quotient and rest bits of 

divisor gives 1 as only one bit in quotient at this point of 

the process. Cross-product is subtracted from partial 

dividend 01 to get 0. Now when 0 is divided by 1 we get 

quotient 0 and remainder 0. Quotient 0 of this partial 

division forms the next bit of quotient and remainder as 

next prefix [8]. In short, Dhwajanka formula for binary 

is further simplified by the nature of the binary numbers. 

Despite being very easy to solve by Dhwajanka, there 

are some limitations of the process which will be 

described in next section.  

3.1.1 Limitations and Solutions:  

A combinational model of this process was designed in 

Verilog [9]. The reason to choose combinational method 

was to compare it with equivalent Verilog 

implementation block and a sequential model will 

require varying number of clock cycles to finish the 

division depending on the input – dividend and divisor. 

The nature of problem in building the combinational 

model and respective solutions on them are described in 

next sections. 

3.1.2 Negative Subtraction: 

 
Figure 6 - Dhwajanka – Problem of recalculation  

During the calculation of third bit of quotient partial 

dividend is 0 and cross-product is 0 which results in 

negative 1 as partial dividend which is unacceptable 

according to algorithm. Solution for this is given as 

recalculate previous iteration with smaller quotient digit 

to result in sufficiently large partial remainder. In this 

case previous quotient bit being 0, it cannot be further 

reduced to make remainder bigger. Hence former to this 

iteration has to be recalculated shown below. 
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Figure 7 - Dhwajanka – Solution of recalculation 

In case of combinational design reiteration would result 

in feedback loop which is unacceptable and in 

sequential design this would lead to a design which is 

data dependant and hence undesirable. Solution on this 

is to allow bits of quotient as well as partial remainders 

to be negative. This obviously is an overhead of 

calculation as the state of each bit of quotient and partial 

remainders has to be maintained, but this enables us to 

build a combinational design. The complete illustration 

is as follows. 

 Figure 8 - Dhwajanka – Problem of Negative Quotient  

During the calculations of third bit of quotient partial 

dividend 00 is subtracted by cross-product 01 to get 

quotient as -1 and next partial remainder as 0. If the 

subtraction is more than 1 then both the quotient bit and 

partial remainder would be negative. 

 

3.1.3 Correct Remainder 

There is another problem in the illustration 

above. While calculating the remainder we subtract 

cross-products from right part of dividend prefixed with 

last partial remainder. Cross-product consists of rest 

digits of divisor and quotient with first cross-product 

contains all bits and is also shifted left by one less than 

bits in rest digits of divisor. If any cross-product is 

negative then it is added. If last partial remainder is 

negative then right part of dividend becomes inherently 

negative. After all the calculations for remainder if it is 

more than divisor or less than zero it is illegal. Also, it is 

imperative to have legal remainder to get correct 

quotient. In the illustration above calculations for 

remainder are as follows. 

 
Figure 9 - Dhwajanka – Solution for Negative Quotient  

Correct remainder is obtained by subtracting divisor 

from remainder. If the subtraction gives remainder more 

than divisor, process is repeated. Above correct 

remainder is obtained by subtracting divisor once, so 

correct quotient is obtained by adding 1. 

3.1.4 Partial remainder overflow:  

As the width of dividend and divisor increases, in some 

cases it is observed that last partial remainder is itself a 

large number which when combined with right part of 

dividend becomes a number which may sometimes 

exceed the width of dividend or divisor itself. This 

results in large correction logic and hence is 

undesirable. There can be different approaches to deal 

with this like checking the correctness of remainder 

after every 3-4 bit calculation of quotient, use of 

sequential design model. To check correctness of 

remainder after every 3-4 bits can work for 

combinational design but has huge overhead of 

calculation partial quotient repeatedly and again results 

is considerably large logic. As seen previously 

sequential model results in a design which would 

depend on data to calculate the answer. 

4. RESULTS:  

 
4.1 simulation results of 8 bits Vedic Division 

 

 

Figure 10 – Simulation result of 8 bits Vedic Division 
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Description:- 

 x  : Input data 8 – bit 

 d  : Input data 8 – bit 

 clk   : Input clock 

 a  : Output data 8 – bit 

 x = 00011001 

 d = 00000101 

 a = 10010011 

Thus simulated result and calculated result match 

correctly. Figure 12 – Simulation result of 16X16 bits Vedic Multiplie

 

4.2 Synthesis Results 

Device utilization summary: 

Selected Device: 3s500efg320-4  

 Number of Slices:   248 out of   4656     5%   

 Number of 4 input LUTs: 450 out of   9312     4%   

 Number of IOs:    25 

 Number of bonded IOBs: 25 out of 232    10%   

 IOB Flip Flops:     8 

 Number of GCLKs:  1 out of     24     4%   

 Total memory usage is 198936 kilobytes 

4.3 Timing Results 

  Minimum input arrival time before clock:  98.119ns 

   Maximum output required time after 

    clock:  4.283ns 

   Total REAL time to Xst completion:  13.00 

secs 

   Total CPU time to Xst completion:   12.90 

secs 

5. CONCLUSION:  

The designs of 8 bits Vedic division have been 

implemented on Spartan3E (3s500efg320-4) device. The 

computation delay for 8 bits Vedic division is 98.119ns. 

It is therefore seen that the Vedic division is much faster 

than the conventional division for higher order bits. The 

algorithms of Vedic mathematics are much more 

efficient than of conventional mathematics. 

 

6. FUTURE SCOPE: 

 In future this work can be extended to higher bit 

Division which can be implemented using Vedic 

Mathematics. Floating Point Vedic Processor could be 

also a good extension of this work.  
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