

Fast and Efficient Division Technique Using

Vedic Mathematics in Verilog Code

 Ugra Mohan Kumar
1
, Sandeep Kumar

2,
 Madan Pal Singh

3,
 Ashok Kumar Yadav

4

1 Assistant Professor, Uttaranchal University, Dehradun

 2 Assistant Professor, JB Institute of Technology, Dehradun

 3 Assistant Professor, JB Institute of Technology, Dehradun

 4 Senior Lecturer, JB Institute of Technology, Dehradun

Abstract: Division is the most fundamental and commonly used operations in a CPU. These operations furthermore form

the origin for other complex operations. With ever increasing requirement for faster clock frequency it becomes essential

to have faster arithmetic unit. In this paper a new structure of Mathematics – Vedic Mathematics is used to execute

operations. In this paper mainly algorithm on vedic division technique which are implemented for division in Verilog and

performance is evaluated in Xilinx ISE Design Suite 13.2 platform then compared with different parameters like delay

time and area (number of LUT) for several bits algorithms.

Key words: Vedic mathematics, multiplication, division, delay time, Verilog.

1. INTRODUCTION:

Division is an important essential function in arithmetic

operations. Multiplication-based different operations

considered as Multiply and Accumulate (MAC) and

internal product are among some of the commonly used

Computation- Intensive Arithmetic Functions (CIAF)

presently implemented and designed in many Digital

Signal Processing (DSP) appliances considered as

convolution of two or more than two information, Fast

Fourier Transform (FFT) of different sequences,

filtering of signals or information and in

microprocessors its used in arithmetical and logical unit

(ALU) [1]. Since multiplying is the most important

factor for the implementation time for most of the DSP

algorithms or techniques, so there is a need of most

efficient and high speed division. Currently, division

time is still the most important factor in determining the

instruction cycle time and the delay time of a DSP chip

The requirement for high speed processing has been

growing as a result of increasing work for computer and

signal processing applications. Higher throughput

arithmetical and logical operations are important to

accomplish the required performance in various real-

time signal and image processing applications [2]. The

main key of arithmetical and logical operations in these

applications is multiplication and division techniques

and the development and designing of fast and efficient

multiplier circuit has been a subject of interest over last

few years. Sinking the execution time and power

consumption of required circuits are very necessary

requirements for various applications such as in digital

signal processing and in digital image processing [2, 3].

This work presents different division techniques and

architectures. Multiplier based on Vedic or ancient

Mathematics is one of the fast and efficient with low

propagation delay and low power consumption

multiplier.

2. VEDIC MATHEMATICS:

Vedic Mathematics introduces the magnificent

applications to Arithmetical calculation and verification,

theory of numbers, complex multiplications,

fundamental algebraic operations, complex

factorizations, simple quadratic and advanced order

equations, concurrent quadratic equations, partial

fractions, in differential calculus and integral calculus,

squaring of complex number, cubing, square root of

complex number, cube root, 2-Dimensional and 3-

Dimensional coordinate geometry and brilliant Vedic

Numerical code.

2.1 Vedic Mathematics Sutras and Up-sutras:

Entire mechanics of Vedic mathematics is based on 16

sutras – formulas and 13 up-sutras meaning –

corollaries.

Sutras

 1. Ekadhikena Purvena

2. Nikhilam Navatascharamam Dashatah

3. Urdhva-tiryagbhyam

4. Paravartya Yojayet

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

99

IJSER © 2017
http://www.ijser.org

IJSER

5. Shunyam Samyasamucchaye

6. Anurupye Sunyamanyat

7. Sankalana vyavakalanabhyam

8. Puranaprranabhyam

9. Calana – Kalanabhyam

10. Yavadunam

11. Vyastisamashtih

12. Sheshanynkena Charmena

13. Sopantyadvayamantyam

14. Ekanyunena Purvena

15. Ginitasamucchayah

16. Gunaksamucchayah

Up-sutras

1. Anurupyena

2. Shishyate Sheshsamjnah

3. Adyamadye Nantyamantyena

4. Kevalaih Saptakam Gunyat

5. Vestanam

6. Yavadunam Tavadunam

7. Yavadunam Tavadunikutya Varganka ch

Yojayet

8. Antyayordhshakepi

9. Antyatoreva

10. Samucchayagunitah

11. Lopanasthapanabhyam

12. Vilokanam

13.Gunitasamucchyah Samucchayagunitah

2.2Urdhva-tiryagbhyam:

The Nikhilam and Anurupyena are for special cases,

whereas Urdhva-tiryagbhyam is general formula

applicable to all [4]. Its algebraic principle is based on

multiplication of polynomials. Consider we want to

multiply two 4
th

 degree polynomials

 Ax
4
 + Bx

3
 + Cx

2
 + Dx + E

Zx
4
 + Yx

3
 + Xx

2
 + Wx + V

AZ x
8
 + (AY+BZ) x

7
 + (AX+BY+CZ) x

6
 +

(AW+BX+CY+DZ) x
5
 +

(AV+BW+CX+DY+EZ) x
4
 + (BV+CW+DX+EY) x

3
 +

(CV+DW+XE) x
2
 + (DV+EW) x +

EV

Figure 1 - Multiplication of two fourth degree

polynomials

Highest degree coefficient can be obtained by

multiplication of two highest degree coefficients of

individual polynomial namely A and Z. A next degree

coefficient is obtained by addition of cross

multiplication of coefficients of 4
th
 degree and 3

rd
 degree

of other polynomials[5]. It means A which is 4th degree

coefficient of polynomial-1 is multiplied by 3
rd

 degree

coefficient of polynomial-2 is added to 4
th
 degree

coefficient of polynomial-2 multiplied by 3rd degree

coefficient of polynomial-1 to get (AY+BZ).

A B C D E

Z Y X W V

Figure 2 - Vertically Crosswise First Cross Product

Similar logic of cross multiplication and addition can be

extended till all 5 coefficients of both polynomials are

used as follows. Every iteration gives a coefficient of

product.

A B C D E

Z Y X W V

Figure 3 - Vertically Crosswise Intermediate Cross

Product

In this iteration, coefficient of degree 4 of product is

obtained. For next iteration we drop A and Z which are

the highest degree polynomial coefficients. The

resulting operation gives coefficient of the degree 3 of

multiplication of polynomials. As follows

A B C D E

Z Y X W V

Figure 4 - Vertically Crosswise Intermediate Cross

Product

Continuing with this process last coefficient is obtained

by multiplication of 0
th
 degree terms of both

polynomials as E*V. This process can be done is both

ways as it is symmetric. In summary the process can be

stated as, process of addition of product of coefficients

of two polynomials in crosswise manner with increase

and then decrease in number of coefficients from left to

right with crosswise meaning product of coefficients for

one polynomial going rightwards while for other

leftwards.

Any decimal number can be thought as a polynomial

with unknown or x equal to 10. Being said that, formula

stated above can be utilized to calculate product of two

decimal numbers. Each digit of decimal number is

though as coefficient of power of 10. Only restriction in

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

100

IJSER © 2017
http://www.ijser.org

IJSER

this case is each cross product should be only one digit,

if not it is added to the next power of 10.

3. PROPOSED ALGORITHM:

The algorithms will be compared to conventional

algorithm which is considered as restoring algorithm

and/or Non-restoring algorithm of division. In restoring

algorithm shifted divisor is repeatedly subtracted from

dividend and result of subtraction is stored temporarily.

The algorithm can be formulated as [6].

N = Q×D + R

Where N dividend, D is divisor, Q is quotient and R is

remainder.

Restoring Algorithm

1. R(m) = N m as width of N

2. Repeat for i from m-1 to 0

Z = R(i+1) - D×2i

If Z ≥ 0 then Q(i) = 1, R(i) = Z

Else Q(i) = 0, R(i) = R(i+1)

Verilog implements restoring algorithm for its

division block. For restoring algorithm worse case N

subtractions has to be performed to get N digits of

quotient. Each subtraction is equal to width of divisor.

3.1 Binary Dhwajanka:

 In binary number system, similar to decimal system,

MSB of divisor is kept aside and remaining digits are

used for cross-products[7].

In binary number system, similar to decimal system,

MSB of divisor is kept aside and

 Figure 5 - Complete Example of Dhwajanka

remaining digits are used for cross-products. As digits in

binary can only be 0 or 1, the process of Dhwajanka

becomes simpler as division has to be carried out with 1

always. Hence MSB of dividend becomes the MSB of

quotient. Cross-product is taken between quotient and

rest bits. Again, in cross-product digits being only 0 and

1 multiplication is replaced by AND logic. After the

addition of cross-product of bits the sum is subtracted

from combination of previous remainder and next digit

of dividend. In the example above first bit of quotient is

equal to MSB of dividend and hence the remainder is 0.

This 0 is combined with next digit of dividend 1, to

form 01. Cross-product of quotient and rest bits of

divisor gives 1 as only one bit in quotient at this point of

the process. Cross-product is subtracted from partial

dividend 01 to get 0. Now when 0 is divided by 1 we get

quotient 0 and remainder 0. Quotient 0 of this partial

division forms the next bit of quotient and remainder as

next prefix [8]. In short, Dhwajanka formula for binary

is further simplified by the nature of the binary numbers.

Despite being very easy to solve by Dhwajanka, there

are some limitations of the process which will be

described in next section.

3.1.1 Limitations and Solutions:

A combinational model of this process was designed in

Verilog [9]. The reason to choose combinational method

was to compare it with equivalent Verilog

implementation block and a sequential model will

require varying number of clock cycles to finish the

division depending on the input – dividend and divisor.

The nature of problem in building the combinational

model and respective solutions on them are described in

next sections.

3.1.2 Negative Subtraction:

Figure 6 - Dhwajanka – Problem of recalculation

During the calculation of third bit of quotient partial

dividend is 0 and cross-product is 0 which results in

negative 1 as partial dividend which is unacceptable

according to algorithm. Solution for this is given as

recalculate previous iteration with smaller quotient digit

to result in sufficiently large partial remainder. In this

case previous quotient bit being 0, it cannot be further

reduced to make remainder bigger. Hence former to this

iteration has to be recalculated shown below.

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

101

IJSER © 2017
http://www.ijser.org

IJSER

Figure 7 - Dhwajanka – Solution of recalculation

In case of combinational design reiteration would result

in feedback loop which is unacceptable and in

sequential design this would lead to a design which is

data dependant and hence undesirable. Solution on this

is to allow bits of quotient as well as partial remainders

to be negative. This obviously is an overhead of

calculation as the state of each bit of quotient and partial

remainders has to be maintained, but this enables us to

build a combinational design. The complete illustration

is as follows.

 Figure 8 - Dhwajanka – Problem of Negative Quotient

During the calculations of third bit of quotient partial

dividend 00 is subtracted by cross-product 01 to get

quotient as -1 and next partial remainder as 0. If the

subtraction is more than 1 then both the quotient bit and

partial remainder would be negative.

3.1.3 Correct Remainder

There is another problem in the illustration

above. While calculating the remainder we subtract

cross-products from right part of dividend prefixed with

last partial remainder. Cross-product consists of rest

digits of divisor and quotient with first cross-product

contains all bits and is also shifted left by one less than

bits in rest digits of divisor. If any cross-product is

negative then it is added. If last partial remainder is

negative then right part of dividend becomes inherently

negative. After all the calculations for remainder if it is

more than divisor or less than zero it is illegal. Also, it is

imperative to have legal remainder to get correct

quotient. In the illustration above calculations for

remainder are as follows.

Figure 9 - Dhwajanka – Solution for Negative Quotient

Correct remainder is obtained by subtracting divisor

from remainder. If the subtraction gives remainder more

than divisor, process is repeated. Above correct

remainder is obtained by subtracting divisor once, so

correct quotient is obtained by adding 1.

3.1.4 Partial remainder overflow:

As the width of dividend and divisor increases, in some

cases it is observed that last partial remainder is itself a

large number which when combined with right part of

dividend becomes a number which may sometimes

exceed the width of dividend or divisor itself. This

results in large correction logic and hence is

undesirable. There can be different approaches to deal

with this like checking the correctness of remainder

after every 3-4 bit calculation of quotient, use of

sequential design model. To check correctness of

remainder after every 3-4 bits can work for

combinational design but has huge overhead of

calculation partial quotient repeatedly and again results

is considerably large logic. As seen previously

sequential model results in a design which would

depend on data to calculate the answer.

4. RESULTS:

4.1 simulation results of 8 bits Vedic Division

Figure 10 – Simulation result of 8 bits Vedic Division

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

102

IJSER © 2017
http://www.ijser.org

IJSER

Description:-

 x : Input data 8 – bit

 d : Input data 8 – bit

 clk : Input clock

 a : Output data 8 – bit

 x = 00011001

 d = 00000101

 a = 10010011

Thus simulated result and calculated result match

correctly. Figure 12 – Simulation result of 16X16 bits Vedic Multiplie

4.2 Synthesis Results

Device utilization summary:

Selected Device: 3s500efg320-4

 Number of Slices: 248 out of 4656 5%

 Number of 4 input LUTs: 450 out of 9312 4%

 Number of IOs: 25

 Number of bonded IOBs: 25 out of 232 10%

 IOB Flip Flops: 8

 Number of GCLKs: 1 out of 24 4%

 Total memory usage is 198936 kilobytes

4.3 Timing Results

 Minimum input arrival time before clock: 98.119ns

 Maximum output required time after

 clock: 4.283ns

 Total REAL time to Xst completion: 13.00

secs

 Total CPU time to Xst completion: 12.90

secs

5. CONCLUSION:

The designs of 8 bits Vedic division have been

implemented on Spartan3E (3s500efg320-4) device. The

computation delay for 8 bits Vedic division is 98.119ns.

It is therefore seen that the Vedic division is much faster

than the conventional division for higher order bits. The

algorithms of Vedic mathematics are much more

efficient than of conventional mathematics.

6. FUTURE SCOPE:

 In future this work can be extended to higher bit

Division which can be implemented using Vedic

Mathematics. Floating Point Vedic Processor could be

also a good extension of this work.

7 REFERENCES:
[1] Purushottam D. Chidgupkar and Mangesh T. Karad, “The

Implementation of Vedic Algorithms in Digital Signal Processing”,

Global J. of Engng. Educ., Vol.8, No.2 © 2004 UICEE Published

in Australia.

[2] Himanshu Thapliyal and Hamid R. Arabnia, “A Time-Area-

Power Efficient Multiplier and Square Architecture Based On

Ancient Indian Vedic Mathematics”, Department of Computer

Science, The University of Georgia, 415 Graduate Studies

Research Center Athens, Georgia 30602-7404, U.S.A.

[3] E. Abu-Shama, M. B. Maaz, M. A. Bayoumi, “A Fast and Low

Power Multiplier Architecture”, The Center for Advanced

Computer Studies, The University of Southwestern Louisiana

Lafayette, LA 70504.

[4] Honey Durga Tiwari, Ganzorig Gankhuyag, Chan Mo Kim,

Yong Beom Cho, “Multiplier design based on ancient Indian Vedic

Mathematics”, 2008 International SoC Design Conference.

[5] Parth Mehta, Dhanashri Gawali, “Conventional versus Vedic

mathematical method for Hardware implementation of a

multiplier”, 2009 International Conference on Advances in

Computing, Control, and Telecommunication Technologies.

[6]Prabir Saha, Arindam Banerjee, Partha Bhattacharyya, Anup

Dandapat, “High Speed ASIC Design of Complex Multiplier

Using Vedic Mathematics”, Proceeding of the 2011 IEEE Students'

Technology Symposium 14-16 January, 2011, lIT Kharagpur.

[7] Ramalatha M, Thanushkodi K, Deena Dayalan K, Dharani P,

“A Novel Time and Energy Efficient Cubing Circuit using Vedic

Mathematics for Finite Field Arithmetic”, 2009 International

Conference on Advances in Recent Technologies in

Communication and Computing.

[8] Shamim Akhter, “VHDL Implementation of Fast NxN

Multiplier Based on Vedic Mathematics”, 2007 IEEE.

[9] Anvesh Kumar, Ashish Raman, Dr. R.K. Sarin, Dr. Arun

Khosla, Small area Reconfigurable FFT Design by Vedic

Mathematics”, 20

10 IEEE.

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

103

IJSER © 2017
http://www.ijser.org

IJSER

